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NUTATION DAMPER - A SIMPILE TWO-BODY GYROSCOPIC SYSTEM

ABSTRACT

Two rigid bodies are pinned together on an axis which is a prin-
cipal axis of inertia for each body; they are free to spin sbout this
axis, except for some friction between them; the system 1s free in
space; one of these bodies 1is inertially asymmetric about this mutusl
axis} and - for simplicity - the other body is symmetric. If this
asgembly is inertilally more nesrly like a disc then a spindle, 1t
settles 1n such a position that the mutusl axis 1is aligned with the
stationary vector of the angular momentum of this system. Thus it
constitutes & means of internal and passive demping of the random

nutations.

The behavior of this system is inspected by considering the numer-
able solution of an example {in which one of the two bodies is a thin
disc, and the other is & thin rod which is always aligned with some
diameter of the disc). The nature of the solutions is indicated
sufficlently clearly by isometric viéws of the trajectories of the
vector of angular momentum of the system in a coordinate system fixed
with respect to the asymmetric body (these trajectories are termed,
somewhat arbitrarily, "polhodes"). The two extremes of the friction
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(the "clamped" and the frictionless assembly) are outlined, and it

is shown that in a variation of the friction between these two ex-

bl

tremes there occurs a rather peculiar change in the behavior of the
system: a form of nutation corresponding to the “"unstable" spin of
a rigid vody becomes "metastable". The emphasis of the presentation.

is on the legitimacy and usefulness of a rather primitive "empirical"

mathematical approach.

o D

wy




&
o

ll'

12.

T

"

TABLE OF CONTENTS

INTRODUCTION + » « = o o + o o o o &

STATEMENT OF THE PROBLEM . . . . .

DERIVATION OF THE EQUATIONS . . .

FORMULATION OF THE NUMERICAL EXAMPLE
CONSTANTS CF MOTION . + . « « + « .
VERY LARGE FRICTION . .-\ + + o «
FAIRLY LARGE FRICTION . . . . . . .
MODERATE FRICTION + 4 o « & « & 4+ &
ZERO FRICTION . . & « « 2 « + o o &
VERY SMALL FRICTION . . « + « + « »
CRITICAL FRICTION .+ « « v + & + & .
REMARKS AND DISCUSSION . . + . & . 4

LIST OF SYMBOLS . « + « v v o » « .

PAGE

10
13
15
17
19
21
22
25
27
28

31



b

b

v

-




"\\

&

o

1. INTRODUCTION

This paper describes a nonlinear system of four ordinary first-
order differentlal equations which represent the behavior of a rather
basic assembly of two rigid bodles-a device which seems to be of
particular interest because by virtue of its simplicity it may be

*
ranked next to the classicasl problem of the nutations of a rigid body.

This device has been suggested (by Dr. C. J. Cohen of Naval
Weapons Laboratory, Dahlgren, Virginia, and 6thers), as a "nutation
damper” for observation satellites. It constitutes a passive system
(one containing frietion, but involving no pover sources, no loss of
mass of the satellite, and no external forces - such as magnetic)
which converts the random nutations of the satellite into a smooth spin
about the vector of the angular momentum of the system. As will be
discussed, such a s&stem can stabilize an assembly which - inertially -
1s roughly of an oblate shape. An ancient {though epparently never
specifically formulated) desideratum of ballistics is an "internal
stabilization" of a spindle. However, it appears - so far - that a
prolate -shaped essembly can only be "destabilized" by the system here

considered.

i

*  TIn their review of nonlinear mechanics (1), Ielmanls and Minorsky
define as a hasic class of nonlinear problems that of the motion of
a rigld vody fixed at a point. Basically, these are third-order
problems (e.g., & gyroscope in gimballs is a three-body assembly,
but has only three degrees of freedom). To that class one may add
an important sub-class, the thecry of projectile stabllity in
ballistics; for a projectile 1s usually considered as & rigid body,
and - though the problem is often linearized - many complications
arise from the mathematical nonlinearity of the forces acting upon
the projectile (2). The problem is usually construed as one of the
fourth-order, but of a particular, "epicyclic,' subelass of that
order, which reduces to the second order in complex varlables .

(3). On the other hand,many other radical complications of the
general ballistic problem arise in those cases where the projectile
may no longer be consldered a rigid body (as just one example of

this class of problems we may mention a projectile containing liquid)
and even in the case where the projectile may no longer be consldered
a body having lnertiel axial symmetry. For these reasons, that
large extension of Leimanis-Minorsky's classification, the motion of
systems of bodles, will eventuaslly be of interest; and in such a
class, the problem here considered seems indeed the simplest one.




Our approach to the problem described here has been "empirical",
viz., rather primitive: 1t has been simply an inspection of the
numerical solutions of this system with "sample" inputs. This approach
is handicapped by imperfections of the availlable analog computing
machinery; yet, a general understanding of the behavior of such a
gystem does emerge from such inspection. In particular, there have
been found some unexpeéted peculiarities in the behavior of this
system; they seem to leave room for hope that an eventusl "internal-

passive"” stabllization of a spindle might not be impossible.

"2
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2. STATEMENT OF THE PROBLEM

Two rigid bodies are pinned together on an axis which is &
principal axis of inertia for each body; they are free to spin about
this axis, except for some friction between them; the system is free
in space; one of these bodies is inertially asymmetric about this

mutual axis; and - for simplicity - the other body is symmetric.

The standard Lagrangian approach requires an introduction of
variables of analysis that completely define, at each instant, not
only the anguler velocities of these two bodies, but also their
position (viz., such coordinates as the Eulerian angles @, 0, ¥).

A considerable simplification, however, becomes possible in our force-
free case, through approaching this problem via a generalization of
Fuler's dynamical equations. The analysis then ylelds only a part

of the problem; the polhodes (the paths of the vectors of angular
velocity in the system-fixed coordinates); but this 1s the principal
part of the problem. Glven the polhodes as a functlon of time, fhe
position of these two bodies at each instant can be - if and when
needed - computed through the Buler-Polinsot interpretation of the
motion as a rolling of the polhode cones on the herpolhode cones

(the paths of the vectors of angular velocity in a Newtonlan coordinate
system); i.e., by a subsequent quadrature. IThis is particularly
convenient in cur force-free case, where the vector of the angular

momentum of the system 1s constant in the Newtonian coordinate system.



3. DERIVATION OF THE EQUATIONS

Let the right-handed triads of the princilpal axes of the two
bodies be 1, 2, % and 4, 5, 6, with 3 and 6 belng the common eaxis

(Figure 1). ‘Iet the moments of inertia be Il % I2, I, for one body;

3
and I, = IS (= 1), I for the other. The components of the angular
veloclties of the first hody are w,, O, mB; and of the second bedy,
W)y W, g Because of the constraint on axes 3 and 6 the same
vector in the 1-2-4-5 plane is described by’mu 5 as by o ; thus

3 Iy

1
the angular veloclty of the second body can also be described by

®; 5 6-* Therefore, the behavior of this system can be described by
EAm Radd '

a four-dimensional vector, viz., by the angular velocities W, Wy, Gy, ' |
W Let the frietion torque acting aslong the axis % on the first body
be F; this is some odd function of the relative angulaer velocity of the

two bodies

B=£D6-£D3
For simplicity we shall here assume the "viscous" friction F = f B , f
a posit;ye constant. Let also Il + I = Kl’ I2 + I =K, I3 + I6 = K5.

The components of the angulsar momentum L of the system on the
moving axes 1, 2, 3 are related to the angular velocitles by the
fdllowing equations (the first two of which have the 1lndicated simple

-1

form because of the simplifying essumption I, = 15):

L = (I, +I) o = Ko,
L, = (I, +I) w, = K,

* However, this vector suffices to define the anguler momentum of the
second body only in the cases of the axial symmetry of this body, when 7 v
any pair (1,2) of transverse axes are the principal axes.

-3
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Then the équations of motion are

|
(@]

%,"Lf@'+Lfﬁ__
L2 - Lﬁ”l + Lbe =

Lj - Llw2 +'Lébl =0

161)6 = - B

[
(@]

The first three equations express the conservation of the vector

of the angular momentum L in space; they are simply a statement that

the derivative of this vector, which in our nutating system 1, 2, 3 is

L -Lxuw, is zero.

In this nutating system this vector is conserved

only 1n magnitude, and its direction continually changes. The fourth

equation is simply Buler's equation for the axls 6, and its simplicity

is enother result of the

re-written in such forms as

(a)

(v)

~ .
Kfnl

K.w, =
Iél)ﬁ = o0, (Kl
Tgog = - F

-
w, = W K2HK3(D
1= % K
| 1
@, = K5 - Kl W
n =8 K
| 2
o, = . - %
3 = Oy
5t 3
- . Kl - K2
B = - o0
3
F =fp
11

-Ke) +F

assumption Ih = I5. These equatlions can be

@, [:(K2 - 15) Wy - I6‘“6]

P =0 [(IB'Kl)mEJ'Ié%]

FWH
S

TEOANTIOAL LIBRARY
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(2 -1 -1 -1
L =1L, [(I5 -k, L - I L6]
' -1 1 -1
. o= =L ) - ) R L,]
by = hy [(15 Kyh - T K
. { s | 1 -1
{c) f Eﬁ;t L,L, :(K2 - K, )
L6 = -F = - fﬁ
6 = (L t+r Y -1t L
L_ 3 6 6 3 3

Each one of these forms has some adventsges. Thus, form (a) might .
appear the most natural; form (b) is particularly convenient when one
needs to consider the mechanism of the friction in detail; and form (c)
is particularly convenlent in visualizing the problem, for three reasons:

firstly, it allows a visualization of Ll’ L2, L3 as coordinates of a

point on a sphere¥; secondly, the third equation 1s free of B; and thirdly,

the "angles of yaw" of the axes 1, 2, 3 nutating sbout the stationary L
are, of course, simply the angles from the axes 1, 2, 3 to the vector L
in the nutating system (whose directlonal cosines are Ll/L’ L2/L, LB/L)'
The term "polhode" applies, strictly, to the paths of the tips of the
‘three—dimensional vectors wl’2,5 and.wl,z,s, and perhaps ought not bhe
applied to the four-dimensional vectors m1,2,5,6 and Ll,2,3,6' Yet the
paths of the latter vectors caen readlily be converted to the true polhodes,
and do specify the behavior of the system sufflciently clearly for our
purpcses. ' '

* This is particularly convenlent in the work with an analog machine,
silnce 1t facilitates keeping track of the imperfections of the machine.

12



4. FORMULATION OF THE NUMERICAL EXAMPLE

Qur system 1s seen to be defined by no less than ten parameters.
With our empirical approach (and for our descriptive purposes) this is
entirely too many, and we need to simplify the problem drastically, yet
attempting to lose as little of the generality as possible.

Five of these parameters characterlize the system "inertially”: in
the forms (a) and (b) of our equations they are ratios such as ;6/Kl’
(K2 - IB)/Kl’ etc.; in the form (c), expressions such as (l/I5 + l/KE)’
etc. These five parameters are restricted somewhat by the fact that the
I's and the K's are moments of inertia; these restrictions amount to the
fact that the I's must be positive and such that they can form a

triangle, viz.,

I, +I.>1I, > [I

1 o 3 - IQL etc.

1

It can be shown that the number of the independent inertial
parameters can be reduced from 5't0 3. However, for our present pur-
poses such complete systemstization is not imperative, and we shall
not attempt it here*. Rather, we shall limlt ourselves to a single

numerical exemple where
I6/I =2 (i.e., the second body is a "thin disc"), and

I, =0, 12/1 = 13/1 = 0.1 (4.e., the first body is a small

"thin rod" along the axis 1).

The sixth parameter is the friction parameter, f/IG’ f/I5 or f
in our three forms of the equations. It completes the specification
of the system 1tself,

The remalning four parameters are the initial conditions; that
is, (in our three forms of equations) the initlal values of w

d .
and B, or of L1,2,3,6

1,21 5)6’
of ml,z,j

* Some remarks on departure from these assumptions are given in section
12. For the important case f = O a mare thorough systematization of
the inertial parameters of this system has been made by Masaitis (6).

13




To simplify'ouf arlthmetic we may select mo?e convenient L
units for moments of inertia, angular momentum, time and friction
coefficient; Although distinctly non-linear, our system does possess
a modlcum of hdmeogeneity. F.g., in the form (c) the expressions for
the derivatives with respect to time are linear and homogeneous in the
reciprocals of the moments of inertisj hence we may use an arbitrary
unit of the moments of inertia 1f we adjust the unilt of time accordingly.
Furthermore, the first three of these expressions are of the second
order in the Lis, and the fourth islinear 1in both L and f." As fer as
the second-order terms are concerned, s further change in the unit of
time is equivalent to multiplying all initial conditions by a constant;
and as far as the terms containing f are concerned, such change 1s
equivalent to a chenge of the friction coefficient*., Thus we are free
to take an arbitrary unit of ﬁime, provided we change the unit of T
gecordingly. We shall select the units of'tim% angular momenta, moments

of inertia and f in such a way that
I =1and LE =1

We shall also restrict ourselves to the natural case B{0) =0,
which corresponds to the situation vwhere the two bodles are oriliginally
clamped together, and the operation of our mechanism starts at the

*¥
instant they are unclamped .

* That 1s, groups of terms of the type dL./dt = L2L /1 can be inter-
preted as dL./d{t/a) = L L,/(I/a), and %urther, as d(bLl}&(t/b) =
(bL,) (L) /I, where a and B are arbitrary; while groups—of the type

dL6/dt = fL/I can be interpreted as d(bLg)/a(t/b) = (bf)}(bL)/I, ete.

Wéth such transformatlons the solutions based on the sssumption
L" =1 =1 can always be interpreted in the conventional units for
L end I (the unit of time being ab; of I, a = Ij and of L, 1/b).

*¥ E.g., the two bodies forming a satellite are clamped by the acceler-
ation of the propelling rocket, and the operation of the mechanism
starts when the propulsion ceases.

14



5. CONSTANTS COF MOTION
Two physical guantities are of particular interest in our study.

One of these is the magnitude of the angular momentum of the
system, L, glven by

L2

I

(Klwl)2 + (Kéng)g +‘(I5(n5 + Iéné)g

2 2 2
= Ll + Lg + L5

Bince there are no external forces acting on the system, this is
* .
a constant of motion . This is one of the reasons for our preference

of the form (c} of our equations.

The other quantity is the kinetic energy T of the system, glven

by

2 o2 o2 2
eT = Ko7 + Ko, + I5D5 + Iaoe

2 2
L /K, + 1.22/1<2 + (L - L6)2/I5 + L1,

]

where L6 = Ismg;

. Generally, this i1s not a constant of motion; for it is readily
seen (particularly from physical considerations) that T is in general
dissipated 1n friction, at the rate which is the work consumed in
friction. In fact, by multiplying the first four ‘equations of (a)
by oy, wb’ mi, g » and adding, we obtain

T=-pF=-tp g O

*¥ This can be readily checked by multiplying the first three equations

of‘(c) by Ly, L, L5, adding and integrating.

15



In fact, this is the principle of operation of this mechanism.
If there 1s any energy flow because of the friction, the system settlés
in a state in which B = O and T 1s & minimum. Generally, one should

expect this to occur about that axis about which the moment of inertis

»*
is a maximum . It is our object to inspect whether such damping of
the nutation actually occurs, and if so, to find how rapid it 1s, and
how it can be expedited. '

In two importent extreme cases, however, T is indeed a constant
of motion. The obvious one of these 1s the case of infinlte frictlon,
when the system degenerates into a single rigld body. The other is

k.
the more interesting (and perhaps novel) case of zero friction .

"Let us now inspect the effect of the parameter f.

* The underlylng principle of mechanics is invoked often enough in
specific applications, but - to our knowledge - has never been
stated in the full force and generality it deserves; 1t seems akin

to Schwartz's inequality and to the second law of thermodynamics.
Cf. also (5)

*% In this case, of céurse, any combinatipn of T, L2 and L. can be

& constant of motion. However, only L~ would survive as such when
the friction 1s introduced.

16
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6. VERY TARGE FRICTION

With £ - oo it is readily seen that (if the torque fB 1s to
retaiﬁ its physical significance, i.e., remain finite) g -0, and
the whole assembly becomes a rigld body with the moments of inertia

Kl, K., and X_ ; equations (¢) vecome, accordingly

5
. -1 -1
L, = L2L5 (K5 - K, )
. _l _l
L, = L5Ll (Kl - K5 )
. -1 -1
L3 = L1L2 (K2 - Kl )

*

The solutions of these equations are well known , but will be
reviewed briefly, in order to "blend" them with those of the more
complicated cases of 0 £ < wo. The kinetic energy of the system
is

2 2, 2
T = L /2K, + L,7/2K, + Ly /eK5

* The formal sclutions are in terms of elliptic functions - which, in
fact, can best be defined {4) as suitably-scaled solutlons of these
equations. These solutions can be summerized as follows: The sep-
aratrix between the two groups of loops of Figure 2 lies in a plane

L5/Ll = \//(KB/KI)(KE - Kl)/(K5 - Kl) = S, say. For nutations about

axis 1, and initial conditions in the 1-3 plane, the solutions are:
L, = Ljocn(k,u); L, = Lémaxsn(k,u); L = Llodn(k,u). The modulus

k = (L O/L ) 8 is O at axis 1 and 1 on the separatrix. The inde-
penden% variable is u = t/U, the unit of time being U = Kl times
\//K2K5/(K5 - KE)(K5 - Kl)/L30° For nutations about axis 3 one may

elther consider k > 1, or (as is more customary) take 1/k as modulus,
with L, = L,.en (1/k,u), L = L, an(l/k,u), ete. It should be em-
phasizeéd tha% the modulus ﬁ of the elliptic functions characterlzes not
only the physical system, but alsoc the initial conditions. This is
somewhat as though a change in the initial conditions changed the
"system"; which, after all, is the basic characteristic of non-linear
systems.

L7



and the tip of the vector L (in our nutating system 1, 2, 3) therefore
lies on the surface of an ellipsoid with semiaxes qfﬁﬁzﬁf, ~/§K£T:
Vfﬁﬁg_. The paths of L are the intersections of this ellipsoid with
the sphere 1Z = const (= 1), and the motion therefore is periodic.
Figure 2 shows these paths for our case of K /K /K = 1/1.1/2.1, which |

(1]

4 -+
L L

81l eX ample o
the nutations about axes l and 3 are stable, while the spin about 2
is unstable. The T-ellipsoid always has.the same proportions, but -
it is very important to note - the magnitude of T must be between two
extremes, for these intersections to occur. In our case T is maximum
for a pure spin about 1, when the ellipsoild is wholly outside the
sphere, touching it only af its smallest semiaxis V/EK;T; and it is
minimum for a pure spin about 3, when the ellipsold is whoilly inside

the sphere, touching it only at its largest semiaxis ﬁ/2K§ .

Incidentally, from the condition B = O in the equations (b) it
is readily seen that the torque F necessary to hqld these two hodies

"frozen" 1is
F=-wmo. (K -x)(1+1/1),
12 1 2000 ¥ 670
so that the inequality Ky # K, (or I, # IE)’ or (as J. Sternberg

put it) an "incompatibility” of these two bodies, 1s & necessary
condition for invoking the mechanism of this friction.

% In a §ewtonlan coordinate system, of course, it 1s the axis 1
which nutates about the stationary L; ete.

18’
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7. FAIRLY TARGE FRICTION

With f finite but sufficiently large we should expect that the
motion of the two-body system would be somewhet like that of a rigid
body, and the trajectories of L (orgg) would be similar to those of
Flgure 23 except that these trajectories will keep "slipping" towards
the loops of the lower kinetic energy, viz., generally from axls 1 to
axis 5. The éssembly thus becomes a "nutation demper", ending always
with the pure spin about axis 3. This is illustrated, for the case
f = 10, in Figure % which has been drawn by the differential analyzer.

Four features distinguish Figure 3 from Figure 2:

First, the multiplicity of the trajectories of Figure 2 is replaced,
in effect, by a single long trajectory (or by any trajectory intermediate
between any two swings of this long trajectory). Of course, a motion
starting in a close proximity to axis 1 would be difficult to obtain on
a differential analyzer, for such motion would be slow in starting

(1t might best be obtained by running the trajectory backwards).

Second, the question whether the motion settles on the positive
Efjthe negative axis 3 1s a question of whether the passage from what
resembles one set of loops on Figure 2 to the other occurs, efter
"bouncing away" from one or the other "saddle point®; for. the.reader
may ‘sense the existence of two such saddle points, roughly in the
vieinity of the positlve and the negative axis 2. Thus, when starting
with small nutations about axis 1, the whole assembly can settle with
exis 3 either parallel, or anti-parsllel, to the space-fixed vector L.
Flgures % and & (and one trajectory on Figure 5) show motion ending at
the "north pole" of the sphere. On each figure the intersections of
the long trajectory with the meridian passing through axis 1 thus mark
a series of points starting at which the motion goes to the north pole,
The same ﬁnuld hold for sufficiently closel& neighboring points on this
meridisang so this series of points becomes a series of sub-arcs of
this merddian. In the region of loops about the pole these sub-arcs
blend together; but 1in the region-of loops about axis 1 the situation 1s

19



more cowplicated._ It can easily be "interpolated" (and with the
differential analyzer it can easily be shown "experimentally") that

for some trajectories which start between such sub-arcs in this

region the motion would "bounce avay" from a saddle polant near the
negative axis 2, and would proceed to the south pole. Therefore 1n

this region this meridlan can be divided into a series of alternate
sub-arecs (and the whole fegion, into a serles of alternate stripes),
starting in which the motion would go either to the north or to the
gsouth pole. On the rest of the sphere the situation 1s obviously
symmetrical, the symmetry being one of a rotatlon through 180° about
axls 2. It i1s natural to lnquire what would heppen to those two
trajectorlies which are the precise bounderies between these two "stripes';
one might expect that they would fall into one or the other saddle point
on positive or negative axls 2 and would "stay there". In the following
(in section 10) we shall touch upon this matter briefly; but here we
need only warn the reader tha£ there are complications; the saddle
points are not necessarily on axis 2, and are not necessarily points of
(even unstable) equilibrium. However, 1t 1s obvicus that any trajectory
in & close vicinity to these two "eritical" trajectories may spend an
extremely long time 1n a clﬁse vieinity of one or the other saddle point

near axis 2,

Third, the "undamping" of the nutations about 1 proceeds faster
than the damping of the nutations sbout 3. This feature of our mechanism,
however, may be affected by a change in the law of friction employed,

Finally, our three -dimensional representatlon of a four-dimensional
problem is necessarily crude. Properly, the representation should
include some statement on the fourth variable (L6, g Or B), whose
varlation corresponds to any parameter distingulshing the different

*
trajectories on Figure 2 ',

* ' Buch curves are easily obtained on the differential analyzer, but
are omltted here for simplicity. The variatlon of any such fourth
variable has the character of rapid oscillations superposed upon s
slow change; but it is, perhaps, only an indication of this slow
change that 1s of interest as m parameter varylng along our long
trajectory. The repid oscillations, of course, are of interest as
indicating the “mechanism by which the "incompatibility" of the two
bodles invokes the friction. '

4
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. MODERATE FRICTION

One should expect that between the two extremes of friction,
f = oo and £ = O, there might exist a particular value of friction
at which the damping of the nutations is "maximized"; and that this
is to be sought for friction £ < 10, Indeed, Figures 4 and 5,
-representing the cases of £ = 2 and £ =.5, do show an increase‘in
the rate of damping. Two features, however, may be noted. The gain
in the rate of this damping diminishes, so that this rate 1s appar-
ently approaching some maximum; and the "undamping" of the nutations
about 1 becomes much more pronounced and faster than the damping of

the nutations about 3.

In fact, the passage from f = @ to f = 0 is accompanied by a
rather ‘puzzling, almost "qualitative", change in the behavior of the
system: there arlses the tendency for L to stick for a long time
in the vicinity of axis 2. We shall presently see that this
complexity can be traced to the fact that of the three pairs of
equilibrium points of the single-body system (the points on the axes
1, 2, 3 in Figure 2), only one remains truly an equilibrium point when
the friction 1is introduced. This is the pailr on axls 3 (Li =L, =8 = 0).
The other two cease to be equilibrium polnts.

This phenomenon might be best inspected by considering next the

other (and Qery interesting) extreme, the case of f = O.

* This tendency seems to be quite distinct from (though it is
undoubtedly related to) the fact that the two "eritical” trajectories
on Figures 3, 4, 5 would'arrive at some "saddle points” and "stay
there".
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9. ZERO FRICTION

With f = 0O, L6 (or m6) becomes a constant parameter, and our

fourth-order system degenerates Iinto ancther third-order system:

1 -1 ]
L, = I, [ (;5 - K, ) L5 - I5 M_L6}
. -1 -1 -1
L, = - L [(15- - X, ) L3 - IBA TL6]
. -1 -1
L5 = L,L, (K2 - Ky )

It may be noted that with L6 = O these are, in effect, the
equations for the nutations of a rather hypothetical rigid body having
the moments of Inertia Kl, K2 and 15. In our example I3
and this hypothetical body is a thin spindle along axis 3%, which is

considerably different from our device made rigid. The solutions, of

«< K, < K,

course, are the elliptiec funetions cn, sn, dn of time.

On the other hend, the terms in L., if they could he taken by
themselves (e.g., in the case of a very large L6), could be viewed

as forming 8 System

: -1

Ly = - Ly(LgI; )

L =+L (LI %)
2 1'7673

which represents the circular nutations of another hypothetical,
axially-symmetric (and again considefably different from our physical
system) rigid body with the moments of inertia K. = K = any K, and

_ 1 2
K5 = I_ + K; the solutions being the circular functions cos, sin. - plus
a constant (for L6). Thus the functions Ll’ L2, L5 for this zero-friction

case might be sald to have the following relation to the circular and
elliptic functions:

If the system_é = 2(5) yields elliptic functions, and the system

i = g(y) ylelds circular functions, the functions Ly, L2, L5 are glven
by the system -

1te

= £(L) +g(L)
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The uh&pﬁu of the curves of L (t), L (t), L (t) are Indeed strongly
reminiscent of the elliptic functiono. The analytical solutlon of this
very interesting case has been achieved by Dr. Yeslovas Masaitis of BRL(6).
For our present descriptive purposes (and for blending with the more
general four-dimensional case) the relationship of these functions to
the elliptic functions is, unfortunately, complicated (they are generally
square roots of the retios of fourth-degree polynomials in elliptic

functions, although there are some simplifications).
There are three pairs of "equilibrium" points (at which L= 0):

(A) L =1L, =0, L5 = + L3A5 viz., on axis 3.

(8) 1, =0, [ Lf)(IZ:l - Ke_l) - L615_l ] = 0; viz:, in the plane
2 -3, 8t I, = & Ly, Lo = Lg/(1 - I /K ).
(c) L, =0, [ La(I{l - Kl'l) - L6I5 -1 ] = 0; viz., in the plane

The simplest way to determine which ones of these are saddle points
(ere unsteble) and which are centers ("stable"), 1s to consider the

kinetic energy ellipsoid, which in this case can be written -as

2 2 2 2
L7/K + L7/K, + (L5 - L6) /I5 =27 - L, /16 =M, say, > 0,

s0 that the center of this ellipsoid 1is raised* by L6’ and its semlaxes
V/_jﬁ IjM In our example thls ellipscid is roughly a thin
horizontal "disc ., with the major axis parallel to axis 2. It can be
visualized from an inspection of Figures 8. When M is minimum this .
"dise" 1s wholly inside the sphere, touching it (in the vieinity of its
major semiaxis V/KEM) only at the points B; accordingly, these points,

* There is no loss of generality in reckoning I..6 positive.
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in the vicinity of the saddle points of Figure 2, become centers.

With a large M, the "disc" in effect merely slices off two (or just
one) horizontal spherical segments) so that the polnts A are centefs,
too. The points C of tangency of the "disc" and sphere in the vicinity
of the intermediate semiaxis V/KIM of the "disc" - and in the vicinity’

of what were the centers at axis 1 on Figure 2 - become saddle points.

As compared with Figure 2, Figures 8 call for an additional
parameter because they no longer utilize the simplification

L6/L5 = I6/(I3 + I6) of Figure 2.

The peculiarity of the behavior of this physical system is indeed

due to this reversal; viz.,

the centers on axis 1 in Figure 2 become the saddle points C in

Figures 8,

the saddle points on axis 2 in Figure 2 become the centers B in

Figures 8; however,

the centers‘on axis % in Figufe 2 remain the centers A in Figures O.
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10. VERY SMALL ¥FRICTION

We have mentioned that when the friction is Introduced and we revert
to a fourth-order systeﬁ, the points A {with the additional qualification
that B = 0) remain equilibrium points. For the points B and C, however,
the requirement that one or the other bracket of equations (¢) 15 zero -
L.e., that Loy = L6/(l -13/1{2) or L30= L6/(1 ~ Iﬁ/Ki) ~ generally
contradicts the requirement (for a point of equilibrium) that p = 0, 1i.e.,

that L3 = L6(l + 15/I6)' Points B will remain points of equilibrium only
in the case where

1/(1 - 15/1{2) =1 + 13/I6’ or K, = X,

. which 1s not the case in our example: 1/(1 - .1/1.1) £ 1+ .1/2, and which

cannot be the case with both the assumption Ih = I_ and the requirement

. 5
I, # 13. Thus for Ky # K, and f # 0, strictly speaking, equilibrium

points B and ¢ do not exist.

Similarly, we may no longer use the argument similar to that which
we used in passing from the case of Ilanfinite frictlon to the case of
falrly large friction, for the quantity M (which determines the size of
the T-ellipsoid) does not necessarily have properties analogous to those

of T ; viz., M as a function of t is not necessarily negative-definilte,.

Nevertheless, we may expect that with very small friction the
trajectories will be somewhat similar to those of Figures 8. In this

senge we shall speak of points B' as "quasi-centers" for the loops

similer to those of Figures 8.

. ‘ ’
The stability of points B so far (with our approach) could be
determined only through numerical computation. It can be described

(for our example only) as follows:

1. As far as the loops about the points B’ are concerned, these
quasi-centers are very stable asymptotically, in the sense that the
notion damps to them very rapidly.
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2. As far as the location of the points B 1s concerned, thege
gquasi-centers are unstable, with the axis 2 as the position of the
unstable equilibrium of the points B. That is, if the loops around
B settle with the'quasi—center ﬂ>a£ the axis 2 exactly, the vector
L will remain at that polnt; but more generally, during these oscillaii_
'tions the point B slips away from the axis 2, first extremely slowly,

and then faster and faster.

3. The slippage of the polnts B away from the axis 2 seems to

proceed aleng a particular curve on our sphere of L2.

i

4, This slippage of the points ﬁjpasses into a fast nutation

about one of the centers A.

5. Nutations about the centers A appear asymptotically stable.
However, the rate of damping of the nutations about these centers
becones extremely small ~ so that it becomes difficult to distinguish,
wlth the differentlal analyzer, whether the centers A are truly
asymptotically stable, or whether there might not exist some
asymptotically-stable “small circle" about the poles AY,

These features can be seen on Figure 6 (f = .1 ) and Figure 7,
(£ = .02).

These emplrical conclusions may, of course, be modified by a

change in the law of friction employed.

¥ The stabllity of points A, and the fact that they are the only
steble points have been recently proven by D. C. kewis (7). °
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11. CRITICAL FRICTION

Now, of course, an increase in friction increases the dampling.
It is not difficult to find, by trials, a value of £ (in our example
this turns out to be approximately f = .125) with which the behavior
of the system cdﬁ be sald to represent most sharply the border-line
(or the blend) between the types of behavior represented by Figures
5 and 6. The behavior may ferhaps be described as follows. Mo%ion
starting in the "polar zone" of our sketches passes at once into a
demping nutation about axis 5.. Motion starting in the "tropical
and "temperate" zones rapidly "drops" to the curve mentioned in item
3 above, and practically stops there for a while - and then proceeds,
with increasing velocity, into a damping nutation about axis 3.
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" 12, REMARKS AND DISCUSSION

We feel that a differential analyzér - provided 1t 1s adjusted
very carefully (and/or provided with a pumber of auxillary compensating
circuits) - 1g an excellent tool for the rough "empirical" exploration
of this sort. Its advantage over the digltal machinery 1s the ease
of access, of visuallzation, and of inspection of the "blends" between
those types of behavior of the system whilch at first glance appear to
pe basically different from previoﬁs experience, 1ts shortcoming

"empirical” mathematical

(in addition to the general shortcoming of the
approach) is a need for careful adjustments, and an apparent sensitivity

of the machine to the type of c¢ircuiltry chosen.

Our example was limited to the body 4, 5, 6 being a "thin disc"
(I, = 2I). A few studies vere doe also with a "fat disc" (1< /1 <2).
Surprisingly, the fat disc performs much better than the thin disec: the
oscilllations are slower, and the damping 1s far more pronounced. As the
disc approaches a sphere (16-%'I), the vector L appears to start approach-
ing the axis 3 asymptotically and without nutatlons. As the disc becomes
a spindle (16 < I), however, the motion passes into a slow and quicﬁly—
damping nutation about axis 2. Thus this mechanism allows a "stablliza-
tion" of a‘’spindle only in this sense: the spindle can be put eventually
into a pure cartwheeling motion, in which the "inertial member" (the
small body 1, 2, 3, which is long along axis 1) arranges itself perpen~
dicular to the final axis of rotation (the sxls 2), but in which the
orientation of this axis with respect to the spindle (the principal
vody 4, 5, 6) is, unfortunately, sleatory.

A number of refinements of this system are possible. At this time
we visualize only the followlng refinements:

{a) A more thorough iunspection of the inequality
/(1 - 15/K2) 1+ 15/I6 ,

which as we have noticed, 1sgrthe reason for the instability of the points
B (and which represents an approach to the condition K5 = Ke).
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(b) An exploratory inspection of the case where the body 1, 2, 3
1s the principal body ("a fat elliptical dise"), with the body 4, 5, 6
the small (symmetrical) "inertial member".

(¢) An exploratory inspection of the possibility of reinforcing
the inertial action of the assembly of the type (b) by "flywheel gearing".*

(d) An exploratory inspection of the effect of variation of the
law of friction employed.

While this paper is limited to purely passive damping, the “empirical"
approach based on these principles should eventually facilitate the inspec-
tion of more complicated mechanisms, which may possess springs, controls,

power sources, and/or loss of mass of the satellite.

From the bailistic viewpoint, the most interesting feature of this
device 1s its strong tendency to stick - temporarily - with the spin
about the diemeter of the disc (axis 2). It is this feature - as well
es the possibility of constructing an equivalent of "negative frietion"™
(viz, an energy source) - that scems to leave hope that an eventual
"internal" stabilization of a spindle might be possible. However,' that
is a matter of "synthesis", i.e,, of basic changes in the physical

system considered here.

g )

SERGE J. ZAROODNY

Q).ﬁ«wb&a/
JAMES W, BRADLEY

¥ A crude experimental medel of such a "flywheel gearing" device shows
an excellent "nutation damping” performance. It 1s interesting to
note that the equations of motion of such device are basically the

same as considered here; only the expressions for the constant
coefficients are different.
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LIST OF SYMBOLS

-moment of inertla of a rigid body

I

K sum of the two moments of inertia about the same axls
L  angular momentum

T kinetic energy

£  time; dot indicates a/dt

w angular velocity

B = Wy —(D5

¥ friction torque coefficlent

F . friction torque
M in the frictionless case, 2T - L62/I6

Subscripts:
Numbers indicate an axis of the coordinate system

- A,B,C indicate the equilibrium points in the frictionless case.
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(6)
. | (— st BODY(AXES 1,2,3,1<1T)
l 2 )

2nd BODY(AXES 4,5,6-,1:1;-1)

FIG. |-SCHEMATIC ILLUSTRATION OF THE PRINCIPLES OF A

NUTATION DAMPER, SHOWING THE COORDINATE SYSTEM IN WHICH,
- ON THE.SUBSEQUENT FIGURES, THE MOTION OF THE TIP OF THE
. VECTOR L OF ANGULAR MOMENTUM IS GIVEN.
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Fic.\'z; POLHODES FOR IENFINITE FRICTION (f= ).
) SYSTEM IS A" RIGID BODY. T |S CONSTANT.
NUTATIONS ABOUT AXES | AND 3 ARE STABLE, ABOUT AXIS 2 UNSTABLE,
33 '




FIG, 3: POLHODES FOR FA|RLY' LARGE FRICTION (f=10)

NUTATIONS ABOUT AXIS | "UNDAMP" AND
PASS OVER TO DAMPED NUTATIONS ABOUT AXIS 3.
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FiG. 4: POLHODES FOR MODERATE FRICTION (f=2)

THE RATE OF “UNDAMPING" ABOUT AXIS |
HAS INCREASED AND SO, TO A LESSER DEGREE, HAS THE
RATE OF DAMPING ABOUT AXIS 3.
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NOTE AN IMPERFECTION OF THE
DIFFERENTIAL ANALYZER: THE
TRAJECTORY SHOULD STAY ON
THE SURFACE OF THE SPHERE.

FIG. 5: POLHODES FOR MODERATE FRICTION (f=0.5)

TWO CURVES ARE SHOWN, ONE SETTLING ABOUT
THE POSITIVE AXIS 3. THE OTHER ABOUT THE NEGATIVE
AXIS 3. THE "UNDAMPING " IS NOW VERY RAPID, BUT THE
GAIN IN THE DAMPING RATE HAS DIMINISHED.
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FIG. 6: POLHODES FOR VERY SMALL FRICTION (f=0.1)
H

rof
BEHAVIOR OF THE SYSTEM HAS CHANGED. THE ,
VECTOR L TENDS TO LINGER ABOUT A "QUASI-CENTER" B
N A
37
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IMPERFECTION OF MACHINES
TRAJECTORY APPROACHES FROM
OUTSIDE AND SPIRALS IN.

_\
|

/N

R S

i

FIG. T: POLHODES FOR VERY SMALL FRICTION (f=0.02)

THE "QUASI-CENTER", B',IS NOW CLEARLY DEFINED.
AS L LOOPS THIS POINT, THE POINT SLIPS AWAY FROM
AXIS 2,SLOWLY AT F|RST BUT WITH INCREASING SPEED.
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FI6.8a: POLHODES FOR ZERO FRICTION (f=0.Le=0)

" SYSTEM IS A (HYPOTHETICAL) RIGID BODY. T IS
- 'CONSTANT. POINTS A AND B ARE CENTERS, POINT C

.‘. N .- \

IS A SADDLE.
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ZERO FRICTION (f=0,L¢=0.2

POLHODES FOR

- FIG. 8b:




FIG.8¢: POLHODES FOR ZERO FRICTION (f=0 L¢=0.5)
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FIG.8d: POLHODES FOR ZEROQ FRICTION (f=0, Ls=0.75)

-0




No. of

Copiles

10

10

Organization

Chief of Ordnance
ATTN: ORDTB - Bal Sec
Department of the Army
Washington 25, D, C.

Commanding Officer

DISTRIBUTION LIST

No. of

Copies

2

Diamond Ordnance Fuze Laboraiories

ATTN:
Branech 012
Washington 25, D. C.

Commander

Armed Services Technical
Information Agency

ATTN: TIPCR

Arlington Hall Station

Arlington 12, Virginia

Commander

British Army Staff
British Defence Staff (W)
ATTN: Reports Officer

3100 Massachusetts Avenue,

Washington 8, D. C.

Defence Research Member
Canadian Joint Starff

Technical Information Office,

N.W.

2450 Massachusetts Avenue, N.W. 1

Washington 8, D. C.

Office of Technical Services

Department of Commerce
Washington 25, D, C.

Chief, Bureau of Naval Weapons

ATTN: DIS-33
Navy Department
Washington 25, D. C.

Chief, Bureau of Ships
ATTN: Technical Library

Code 335, Rooam 1532

Department of the Navy
Washington, D. C.

Director

U. 8., Naval Research Laboratory

Washington 25, D. C.

43

Organization

Commander
U. S. Naval Weapons Laboratory
Dahlgren, Virginia
Of Interest to:
br. C. J. Cohen

Commander
Naval Ordnance Laboratory

ATTN: Mr. Nestingen
Pr. May
White Oak -

Silver Spring 19, Maryland

Commander

Naval Ordnance Test Station

ATTN: Technical Library
Dr. W. R. Hazeltine

China Lake, California

Commander

Air Force Systems Command
ATTN: Deputy for Development
Andrews Air Force Base
Washington 25, D. C.

Commander

Aerospace Technical Intelligence
Center

ATTN: RRIM - Dr. Gertrude Blanch

Wright-Patterson Air Force Base, Ohio

Commending General

Army Rocket and Guided Missile Agency

ATTN: Technical Library, ORDXR-OTL
Mr. Clifton Fitton

Redstone Arsenal, Alabama

Commanding General
Army Ballistic Missile Agency
Redstone Arsenal, Alabama

Commanding Officer

U. 8. Army Research Office {Durham)
ATTN: Dr. F. G. Dressel

Box CM, Duke Station

Durham, North Carolina




No. of

Copies

DISTRIBUTION LIST

No. of
Organization Copies
Army Research Office 1
Arlington Hall Station
Arlington, Virginia
Director
National Aeronautics and
Space Administration 1
ATTN: Division of Research Information

1520 H Street, N.W.
Washington 25, D. C,

Director 1
Jet Propulsion Laboratory

ATTN: Mr. Irl E. Newlan, Reports Group
4800 Oak Grove Drive

Pasadena 3, California

1
Arthur D. Little, Inc.
ATTN: Mr. W. A. Sawyer
Acorn Park
Cambridge 40, Massachusetts 1

Applied Physies Laboratory

The Johns Hopkins University

ATTN: Mr. George L. Seielstad

8621 Georgia Avenue 1
Silver Spring, Maryland

Cornell Aeronautical Laboratory, Inc.

ATTN: Miss Elma T. Evans 1
Librarian

L455 Genesee Street

Buffalc, New York

Parker Aircraft Company
5827 W. Century Boulevard
Los Angeles 45, California 1

Flight Refueling, Inec.

ATTN: Charles E. Comean

Friendship International Airport
Baltimore 3, Maryland 1

Professor D. J. Brouwer
Yale University
New Haven, Connecticut

L

Organization

Professor George ¥. Carrier

Division of Engineering an
Applied Physics ‘

Harvard University

Cambridge 38, Massachusetts:

Professor J, P.'la Salle
RIAS

7212 Bellonsa Avenue
Baltimore 12, Maryland

Professor R. Langer
USA MCR

University of Wisconsin
Madison, Wisconsin

Professor C. E. Langenhop
Iowa State College
Ames, Iowa

Dr. D. C. Lewis

RIAS

7212 Beilona Avenue
Baltimore 12, Maryland

Professor W. S. Loud
University of Minnesota
Minneapolis 14, Minnesota

Dr. C. V. L. Smith
National Aeronautics and
Space Administration
Data Reduction Division
1520 H Street, N.W.
Washington 25, D. C.

Professor J. J. Stoker

New York University

Institute of Mathematics and Mechanics
New York 53, New York

Professor C. A.,Truesdell
Indiana University
Bloomington, Indiana



+IoqowerRd UOTIOTIY U3
JO s8NTeA 'sNOTIBA X0 pajoadeur srm suoljernbs suy3 Jo smopjntos f 09Ip OTU3, ©
Z3u30 dY3 ‘ pad Uy, B I O3 TIOUD T §ITpoq Iul Jo swo ‘yovoadde Tworardme
quzsald syu3 Jod -PITPNAS ST - S93T[[9%88 UOT3IRAISSqO JOF ,JodmBp UOTIBIN,,

T g® pegsedBns 907A9D ¥ - $3TPOq PIITT asg JO ATQEOSSE UB JO JOTANTSq U

1rodoy EHTAISSYIONND
#TQ TT'OTOS *ON OSWD “TOO-£0-¢05 "o foxd vu

Suidmeg woTrEINg T96T Tr2dy GETT -oN 33odsy Tad

- BULTTT®18S5 AoTperd "M ' puw AUpOOIRZ ‘L °F

€31 TTTa988 WEISXS DTJODSCHED XIOE-OMI TIINIS ¥ - HEINT NOIIVION

- Bupdueg ucT3RIny 0Jy ‘997I03BI0qRT UoIwesay OTISTITEd
TATJISSYIONN *Of UOTESa0OY av

* Xagamaed UoTIOTIZ I0)
Jo sanTer snolTeA J0F pioadsur axm wnc..-..._.dndu aq} Jo suopinros § O09TP Ui}, ®B
IS0 9l «...uo.nu.—d..._. B 3q 01 USSCYD ST S5TpOq 943 JO Suo nucchnﬁd.ﬂuu.nh.nauu
juasaxd ayj Jog PITPRYS ST - S T[[@I6F IOTIBAISEQO JI0F JodEp moTyEqnT,
v g8 pI15aBing 20TASp ¥ - 83Tpoq PIITI 0AY Jo ATUEESEE UR JO JoTAwqeq JUL
3r0d3y OETAL
#Tg°TT"0T0S "o OSWD “TO0~0-€05 *of oumﬁ

Bupdma oWy . TP6T TTIdY gITT “oN 2roday Tag

- S TTTwG £aTpesy *M °f YU¥ AODOOTEZ °f *§
S31TTT@18E - WAISIS OII00S0EAD XIOE-OAL FIIWIS V -~ MEIAVI HOLIVINN

- Surdweq woTieIny PV ‘SOLIOIRIOQE] QOIRISSY JFISTIRE
* O WOTEEa00Y ayr

" (T AISSVIOND

* Iousred UOTIOTIF I3
. JO SonTeA SNOTJIBA JQJ Pajoadsur arg suolisnbs sy Jo suorgntos f LO8TP UTu3, ®
J5730 8y pod UYL, ® 8q 04 USSOWD ST 5ITpoq oul JO IN0 ‘yoeoxdde Tworardme
. quasazd oyl Jog “PITPNGE ST - S93TTL9198 WOTIRAIISQO JT0J | J3dmep woTjieqnd,
B 99 poasoddns 20TASD ¥ - S3Tpoq PIATI Qmy JOo ATqQUeSS® UB JO JIOTABOaq a4]

- 3a0dsy QHETASSVIOND
HTg T OT0G "off oD ‘TO0-£0-¢0G¢ “of foxg wa
T96T TTady GZIT *oN 3¥odsy TaI

Bupdmeg wotiwIny !

- 981TTT9%388 LeTperg M “r pue Lupoorey [ S

S99 TTT238S WAISXS OTA00SOHAD RCOS-OMI TTIWIS YV - HAIHYT NOTIVIAN

~ Bupdmeq uoi3mINK 04y ‘S27I03BI0qR] UaIEaSay ITISTTTed
TETJTSSVIONN *Of UOTES3DY ] av

hdaﬂﬁhdﬁ TOTIITIF I
20 SITTRA m:o.“.ndbhuhn.w#uuﬁﬂnﬂ arme suop3enbe Y1 Jo smopqnpos ¢ 2OSTP UT 3}, ®
IO g3 € POI U3, ® 99 O UISOUD ST SITpOq I} JO JUO nuuonnnmw.ns.nhﬂmau
jussaxd oy Jog pPITYNAS ST - SS3TTI9FEN DOTIRALSSQO Jo3 |, Jadmgp woTiejnud,

% g8 poqsadins S0TASD W - noﬁgughgaho%nnwﬁhogmﬁa

qrodey (EAIJISSVIOND
111" a.nom "o OSHD “TOOCO-E05

T96T TIdy gerr -oN sxodey T

Larpexg -p "¢ pue fopooreg P °g
RATSXS JLJO0S0HAD XIOT-OML FINIS V - HATHVI ROLLVION
A1V ‘S9TIOIBIOGET YDIBITIY JTRETLIVE
o!ﬂc.nwmuuuq a

~oy {oxg w1

Foypdme| uoTIeIng
- 593TTTR9Y
5} TTTo388
- Bupdmeq wopyeIng
T ATSSVIONN






